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Time-Domain Wavelet Galerkin Modeling of
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Dielectric Waveguides
Masafumi Fujii, Member, IEEE,and Wolfgang J. R. Hoefer, Fellow, IEEE

Abstract—The time-domain wavelet–Galerkin method based on
Daubechies’ compactly supported scaling functions of high regu-
larity has been applied to the analysis of two-dimensional dielectric
slab waveguides that have typical dimensions and material param-
eters of optical integrated waveguide components, and the results
are compared with those obtained with the conventional finite-dif-
ference time-domain method. It has been found that the proposed
method allows discretization with a much coarser grid than the
conventional time-domain analysis techniques due to its local sam-
pling and highly linear numerical dispersion properties. A series of
numerical experiments demonstrates the capability of the method
to simulate the wave propagation of electrically large inhomoge-
neous media with reduced computational expenditure.

Index Terms—Daubechies wavelets, electromagnetic analysis,
time-domain analysis, wavelet–Galerkin method.

I. INTRODUCTION

RECENTLY, the wavelet–Galerkin scheme based on
Daubechies’ compactly supported scaling functions

with two vanishing moments ( ) was proposed by Cheong
et al. [1]. The shifted interpolation property of Daubechies’
wavelets adopted in Cheong’s method enables local sampling
of the field, leading to a versatile and simple algorithm for
inhomogeneous media. Being a single-channel approach where
only one-level scaling function is used as a basis function,
unlike the conventional wavelet-based methods, such as the
scaling-function-based multiresolution time-domain method
(S-MRTD) [2], Cheong’s method does not require computation
of the constitutive relations of Maxwell’s equations in spite of
the large support and the asymmetry of the basis function.

The authors have extended the method by using Daubechies’
scaling functions with three and four vanishing wavelet mo-
ments (denoted as and , respectively) and investigated
their fundamental numerical dispersion properties [3]. With
basis functions of higher regularity, better accuracy is obtained.
Moreover, by virtue of the minimum support of Daubechies’
wavelets and scaling functions, the stencil size or the number
of coefficients in the update equations is kept to a minimum,
resulting in an optimally efficient algorithm.

The present algorithm is suitable for electrically large struc-
tures containing inhomogeneous media. One of the most inter-
esting applications is the analysis of integrated planar optical
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waveguide components, which is computationally too expen-
sive to solve with the conventional space-discrete methods such
as the finite-difference time-domain (FDTD) method [4] and
the transmission-line matrix (TLM) method [5] because the dis-
cretization must be small enough for these methods due to the
numerical errors. In contrast to the beam propagation methods
(BPMs) [6], [7], which are the most commonly used methods for
analyzing optical waveguide components, the proposed method
has the advantage as in FDTD [8] that it solves Maxwell’s equa-
tions with only wavelet-expansion or finite-difference approxi-
mations, hence, reflection and radiation are inherently taken into
account.

This paper addresses the two-dimensional time-domain
wavelet–Galerkin method for TE polarization. In order to
evaluate the accuracy and efficiency of the time-domain
wavelet–Galerkin method, we demonstrate the analysis of
two-dimensional dielectric slab waveguides including step
and Y-shaped junction structures. The results are compared
with those obtained with the conventional FDTD method. For
open boundary conditions, the anisotropic uniaxial perfectly
matched layer (UPML) [9] absorbing boundary condition
(ABC) has been implemented; the performance of the UPML
ABC is also evaluated to clarify its adaptability in the present
scheme. The most important contribution of this paper is that,
in the electrically large dielectric waveguides, convergence
of the time-domain wavelet–Galerkin method and FDTD has
been examined with different levels of discretization, and
demonstrated a significant reduction of computational cost
compared to FDTD; the proposed approach enables an accurate
analysis of such waveguides with reflection and radiation
taken into account that has been difficult to achieve with other
numerical methods.

II. FORMULATION

Maxwell’s equations for the two-dimensional TE polariza-
tion

(1)

(2)

(3)

are discretized on the standard Yee grid [4]. The basic formula-
tion is also given in [3] and [10]. The field values are first ex-
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panded into the Daubechies’ compactly supported scaling func-
tions [11] as

(4)

(5)

(6)

where

(7)

is the well-known Haar scaling function [12] and

(8)

is the translated scaling function with
being the first-order moment of the scaling function.

The standard Galerkin’s procedure leads to a system of
time-evolution equations similar to the S-MRTD method [2] as

(9)

(10)

(11)

where denotes the effective support of the basis function,
i.e., the stencil size or the number of connection coefficients
per side in the update equations. The coefficients connecting
the scaling functions and their derivatives are listed in Table I

TABLE I
CONNECTIONCOEFFICIENTSa(l), THE FIRST-ORDERMOMENTSM , AND THE

STABILITY FACTOR s FORD , D , AND D SCALING FUNCTIONS

Fig. 1. Geometry of the straight optical waveguide.a = 5 �m, b = 2 �m,
andc = 2 �m.

[3], together with the first-order moments and the maximum
limit of the stability factors for the two-dimensional square-grid
case [2]. The connection coefficients
for the negative argument can be obtained by
for .

In order to truncate the analysis region, an UPML ABC [9]
has been implemented. The UPML formulation in [9] yields the
standard two-step updating procedure for the wavelet–Galerkin
scheme. The first step is to update the electric flux density
from the magnetic field and

(12)
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TABLE II
ANALYSIS CONDITIONS FOR THESTRAIGHT WAVEGUIDE.N IS THE NUMBER OF TIME STEPS. CPU TIME IS FORUSERPROCESSONLY.

Fig. 2. Time data of theE -field in the straight optical waveguide detected at
v obtained withD scaling function.

The second step is to update from locally without ne-
cessity to include the neighboring or due to the shifted
interpolation property of the scaling functions

(13)

The update equations for the magnetic flux density, and
the magnetic field , are obtained similarly.

As discussed in [9], these time-evolution equations can
cover the whole analysis region simply by changing the
material parameters for the inner computational region and
the UPML region. The UPML material parameters are chosen
to be for the inner computational region, and

with fourth-order polynomial scaling
for the UPML region; the maximum value ofat the end of the
UPML region is chosen to be [9],
where is the cell size either or perpendicular to the
UPML interface with the regular region. The other parameter

over the whole region.

Fig. 3. Time data of theE -field in the straight optical waveguide detected at
v obtained with FDTD.

Fig. 4. Time data of theE -field in the straight optical waveguide detected at
v andv compared forD and FDTD with different grid sizes.

The UPML region is backed by a perfect electric conductor
(PEC) wall implemented using the mirror principle. Although
the basis functions are asymmetric, they satisfy the interpola-
tion property and, thus, the mirror image is accurate at integer
points. The basis functions have nonzero asymmetric values at
noninteger points; nevertheless, this does not affect the numer-
ical procedure.
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(a) (b)

(c) (d)

Fig. 5. Snapshots of theE -field in the straight optical waveguide. (a) 18 fs. (b) 36 fs. (c) 54 fs. (d) 72 fs.

III. A NALYSIS OF DIELECTRIC SLAB WAVEGUIDE STRUCTURES

A. Straight Waveguide

The TE-mode wave propagation in a straight optical wave-
guide was analyzed both with the -based scheme and FDTD.
Fig. 1 shows the geometry of the waveguide.

Convergence was examined with different discretizations for
the -based scheme and for FDTD. The analysis conditions
are summarized in Table II. A raised-cosine modulated sine
pulse with a single oscillation period was launched at the left-
hand-side end of the waveguide. The spatial distribution of the
excitation pulse was chosen to be similar to that of the funda-
mental propagation mode. The center frequency of the excita-
tion pulse was about 193 THz, which corresponded to 1.55-m
wavelength in free space. The center dielectric slab had a re-
fractive index and was bounded by air regions, thus,
the cell size was approximately 1/5–1/10 of the propagation
wavelength. The source current had a raised-cosine distribution
within the excitation region. The entire analysis region was sur-
rounded by five layers of the UPML ABCs [9], which yielded
less than 0.5% of reflection in this case, as discussed in the fol-
lowing section.

Figs. 2–4 show the time series signals of thefield detected
at 0.2 m from the UPML boundaries on the horizontal center
of the waveguide (see and in Fig. 1). The distance be-
tween the two points is 4.6m. Figs. 2 and 3 are the -field
detected at for and FDTD, respectively. The results of
the -based scheme in Fig. 2 show good convergence for a
medium grid, while those of FDTD in Fig. 3 show that conver-
gence is still not observed even for a fine grid. The results of the

-based scheme with a medium grid and those of FDTD with
an extra-fine grid are compared in Fig. 4, and they agree well.
In comparison of the CPU time, the -based scheme with a
medium grid takes 4 min 30 s, while FDTD with an extra-fine
grid takes 20 min 57 s. From these results, one can conclude that
the -based scheme has an advantage over FDTD in terms of
both CPU time and memory requirement for the modeling of
electrically large dielectric waveguides.

For the case of the -based scheme with a medium grid,
Fig. 5 demonstrates the snapshots of the wave propagation in
the waveguide at every 18 fs from the start of the simulation.

B. Evaluation of the UPML ABC

The performance of the UPML ABC was evaluated for the
particular case of the dielectric waveguide analyzed in this
paper. The waveguide configuration for this test was the same
as in Fig. 1, except for the shorter waveguide length m.
The same excitation was launched in front of the interface of the
regular and UPML regions, and time signals were detected at
0.2 m in front of the other interface. To obtain a reflection-free
reference signal, a 5-m-long waveguide having the same
geometry terminated with the same UPML ABC was used, and
the computation was terminated before the reflected wave from
the other side of the ABC reached the detector. Therefore, this
experiment measures the reflection from the single interface
in the direction of wave propagation. In this configuration,
preliminary experiments have shown that sidewall effects are
negligible.
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Fig. 6. Relative local error[v(t) � v (t)]=[v (t)] of the time signal
reflected from the five-layer UPML.

Fig. 7. Relative local error of the time signal reflected from the ten-layer
UPML.

ABCs with five and ten layers were examined. Figs. 6 and 7
show the relative local reflection errors with respect to the max-
imum amplitude of the reference signal , namely,

, and Fig. 8 shows the reflection coefficients
in frequency domain , where
denotes the Fourier transform of . These results show that,
for the same discretization, the performance of the UPML is
slightly better in the wavelet–Galerkin scheme than in FDTD
because of the high linearity of the numerical dispersion of the
wavelet–Galerkin scheme.

An important observation of these results is that the perfor-
mance of the UPML–ABC is more sensitive to the number of
PML layers than the grid size; even if the grid size increases
slightly, a desired level of absorption can be maintained by using
the similar number of the PML layers.

C. Step Junction

The reflection from a step in the dielectric constant of the
same waveguide shown in Fig. 9 has also been analyzed. In
order to detect the small reflected signal, an UPML ABC with

Fig. 8. Frequency spectra of the reflection coefficients of the five- and
ten-layer UPML. —:D medium grid, - - -: D fine grid, � � � � � �: FDTD
medium grid, and -� - � -�: FDTD fine grid.

Fig. 9. Geometrical configuration of the step junction in the waveguide.a =
5 �m, b = 2 �m, andc = 2 �m.

ten layers has been employed; the reflection from the ABC is
expected to be less than80 dB. As in the previous sections,
coarse to extra-fine grids are used in the analysis.

The frequency spectra of the reflection from the step junction
is shown in Fig. 10. The results obtained with a coarse grid are
not shown because they have large errors due to the large nu-
merical dispersion. The results of the -based scheme are in
line with those from FDTD with extra-fine grid because of the
highly linear numerical dispersion of the scheme, while FDTD
with medium and fine grids yields erroneous values. The devia-
tion in the amplitude of the reflection is mainly due to the error
in the modeling of the location of dielectric material boundaries
that is inherent to any space-discrete methods. This error will
be suppressed by adding wavelet terms in the region of mate-
rial boundaries without seriously increasing the computational
overhead, which will be the subject of future research.
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Fig. 10. Frequency spectra of the reflection coefficient of the step junction.

Fig. 11. Two-dimensional Y-shaped junction under test. Unit is micrometers.

D. Y-Shaped Junction

A Y-shaped junction structure was analyzed with the
-based scheme to evaluate the adaptability of the proposed

method to optical waveguides of practical engineering interest
in the two-dimensional case. This will give further insight into
the method when it is extended to the three-dimensional case.

The Y-shaped junction shown in Fig. 11 is a simplified
two-dimensional version of the original three-dimensional
counterpart that has been already analyzed with various BPMs
[6], [7]. The dielectric slab in our case has a refractive index

and is bounded by air. The initial 5-m-long and
2- m-wide waveguide section branches into two identical
waveguides while maintaining the same width, and the center
of the waveguide traces , where the
length of the junction section is m. The curvature of
the slab–air boundary was modeled using a staircase approxi-
mation. The entire analysis region 45m 8 m is surrounded
by ten-layer UPML ABCs.

The structure was analyzed with two different discretizations:
medium ( m, m), and medium-fine
( m, m); the number of Yee cells
is 100 920 for the medium grid and 180 920 for the
medium-fine grid including the UPML. The time duration of
the analysis was 2 ps, the time step was chosen to be 0.2
times the maximum Courant limit of the corresponding FDTD
method, and the number of time steps was 201 111 for the
medium grid and 254 388 for the medium-fine grid. The time
signal was detected at 5m from the left-hand-side end () and
at 0.2 m from the right-hand-side end () of the waveguide.

Fig. 12. Time series data of the Y-shaped junction structure obtained with the
D -based scheme. The incident and reflected signals atv are shown.

Fig. 13. Time series data of the Y-shaped junction structure obtained with the
D -based scheme. The reflected signal atv is shown.

Fig. 14. Time series data of the Y-shaped junction structure obtained with the
D -based scheme. The transmitted signal atv is shown.

The user-process CPU time was 14 h for the medium grid and
32 h for the medium-fine grid with a Sun Ultra workstation of
270-MHz clock rate and 256-MB memory. The executable file
size was about 20 MB for the medium-fine grid.
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Fig. 15. Frequency spectra of the reflection (S ) and transmission (S ) of
the Y-shaped junction obtained with theD -based scheme, - - -: medium grid,
—: medium-fine grid.

The resulting time data are compared in Figs. 12–14. Due
to the staircase approximation, the reflection from the junction
section is smaller for the medium-fine grid than for the medium
grid. The transmitted signals agree better in the wavefront than
in the tail for both discretizations. This can be due also to the
discretization error in the-direction for the medium grid. The
frequency-domain data in Figs. 15 show that the reflection from
the junction is about 20 to 30 dB.

IV. CONCLUSION

The time-domain wavelet–Galerkin method based on
Daubechies’ compactly supported scaling functions with three
and four vanishing moments has been applied to the analysis
of two-dimensional electrically large dielectric waveguides
having a typical dimension of optical waveguide components.

The minimum support property of Daubechies’ scaling func-
tions yields effective algorithm, and the highly linear numerical
dispersion property of the analysis method reduces the number
of cells in the analysis, thus enabling the solution of the time-de-
pendent Maxwell’s equations for electrically large inhomoge-
neous structures with a reduced computational effort compared
to the conventional FDTD method.

Sample waveguides were analyzed with different discretiza-
tion levels, and good convergence was indeed obtained with the
wavelet–Galerkin method, while with FDTD, much finer grids
were needed for sufficient convergence.

It will be straightforward to extend this method to the three-
dimensional case, leading potentially to a full-wave solution
of such waveguides that could not be solved with the FDTD
method due to excessive computational requirements.
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